Impact of aircraft NO_x and aerosol emissions on atmospheric composition: a model intercomparison

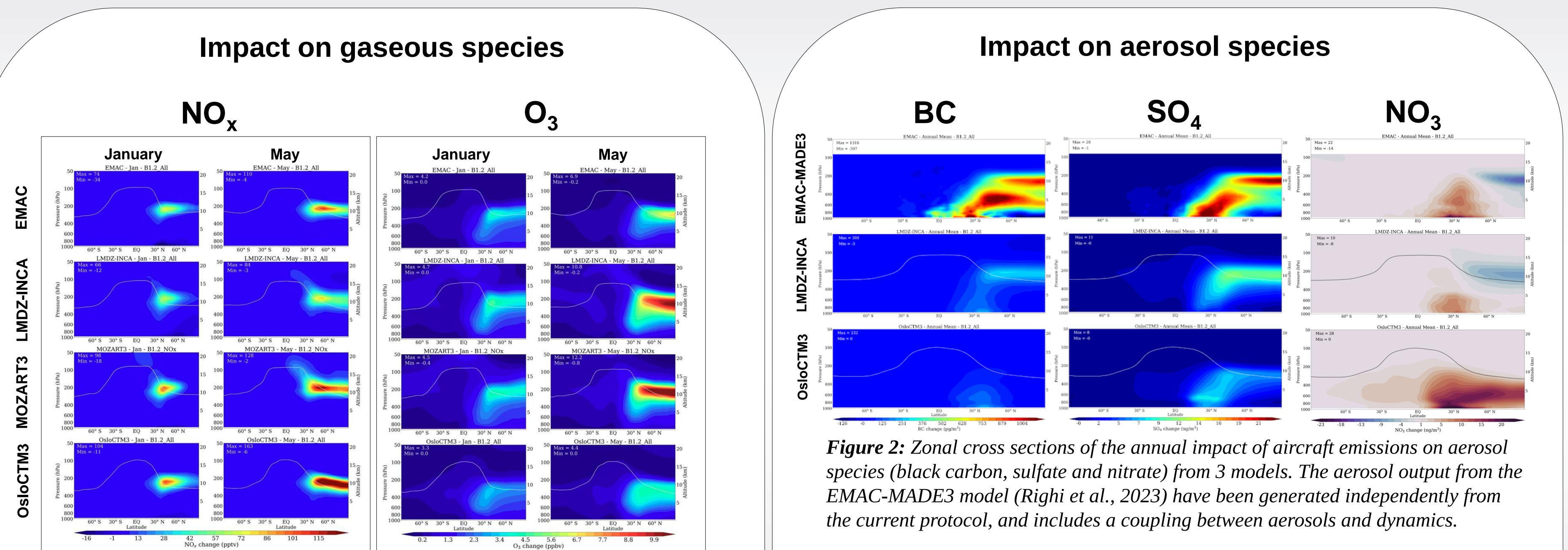
<u>Y. Cohen^{1,*}</u>, D. Hauglustaine¹, N. Bellouin², M. T. Lund³, S. Matthes⁴, A. Skowron⁵, R. Thor⁴, M. Righi⁴

1. Laboratoire des Sciences du Climat et de l'Environnement, LSCE-IPSL (CEA-CNRS-UVSQ), Université Paris-Saclay, Gif-sur-Yvette, France

- 2. Department of Meteorology, University of Reading, Reading, United Kingdom
- 3. CICERO Center for International Climate Research, University of Oslo, Norway

*Presenting author email : yann.cohen@lsce.ipsl.fr

Introduction: Aviation impacts climate with both CO₂ and non-CO₂ effects. The latter have been recently evaluated as twice the CO₂ effects regarding their effective radiative forcing (ERF) in 2018, with uncertainties 8 times more important (Lee et al., 2021). The ACACIA EU project (Advancing the Science for Aviation and Climate) aims to improve the knowledge on non-CO₂ effects from subsonic aviation on climate. Among the aircraft emissions, the nitrogen oxides (NO_v) show both warming and cooling effects through photochemical processes on gases and aerosols. Its net ERF notably depends on the NO_x and methane background and still shows important uncertainties (Skowron et al., 2021; Terrenoire et al, 2022).


ACACIA

<u>Modeling experiment</u>: Impact of NO_x and aerosol emissions on atmospheric composition and climate

- Tools: 6 global chemistry-climate models
- → EMAC, LMDZ-INCA, MOZART-3, Oslo-CTM3, UKESM1, GEOS-Chem
- Simulations setup:

ACACIA

- → Chemistry: gaseous and aerosol phases, troposphere and stratosphere
- \rightarrow Nudged horizontal winds, without any feedback from chemistry to dynamics
- Aircraft emissions inventories:
 - Present-day: CEDS (Hoesly et al., 2018)
 - Future: several socioeconomic scenarios (Gidden et al., 2019)
 - Emissions files corrected (Thor et al., 2023)
- Main perturbation test: *Standard* run minus *No aircraft* run

Figure 1: Zonal cross sections of the impact of aircraft emissions on gaseous species (nitrogen oxides and ozone) from 4 models, averaged over 2014 – 2018.

Similarities

- Maximum response above the tropopause
- January: response rather confined at mid-latitudes
- May: -
 - Northward spread
 - Subsidence effects on ozone

Differences

- NO_x magnitude: up to a factor 2
- \rightarrow due to nitrogen species partitioning
- \rightarrow but responses rather similar for NO_v
- Ozone magnitude: maximum ranging from 3.3 to 4.7 ppb in January, and from 4.4 to 12.2 ppb in May

Similarities:

- 3 models: impact at the surface, and nitrate (NO₃) increased in the troposphere
- EMAC-MADE3 and LMDZ-INCA: impact in the UTLS, with an increase in sulfate (SO_4) as a product from sulfur dioxide (SO_2) emissions, and from the NO_x -induced OH increases
- \rightarrow less NH₃ available for the formation of ammonium nitrate (NH₄NO₃), because NH₃ reacts more efficiently with $SO_4 \rightarrow less NO_3$ in the UTLS Differences:

Magnitude of the responses in the UTLS (different modal distributions)

Table 1: Backgrounds of NO_x in the UTLS and methane lifetime (TCH₄), with the global perturbation of ozone, methane lifetime and OH concentration normalized to the annual NO_x emission rate (ENO_y).

	Unit	EMAC	LMDZ-INCA	MOZART3	OsloCTM3
NO _X background (150 – 300 hPa)	10 ⁻² TgN	6.8	3.4	4.6	6.9
$\Delta O_3 / ENO_x$	DU (TgN/a) ⁻¹	0.51	0.76	0.73	0.61
Background CH ₄ lifetime (TCH ₄)	year	7.8	8.1	8.4	7.6
$\Delta TCH_4/ENO_x$	% (TgN/a) ⁻¹	-1.3	-1.6	-1.2	-1.2
ΔΟΗ	10 ⁵ cm ⁻³	0.18	0.27	0.18	0.19

- Stronger ozone response with a lesser NO_x background at the cruise altitudes
- Methane lifetime sensitivity ranging between -1.2 and -1.6 % per TgN/a

Conclusions

- Encouraging similarities amongst the models
- Some intermodel differences still to be understood
- → Need of further experimentations:
 - \rightarrow With the same reaction rates through the models
 - \rightarrow With more similar parameterizations: scavenging, lightning, aerosol bins, heterogenerous reactions...

Next step: 3 papers to submit

- Current study to be completed: incoming outputs from 2 models
- Assessment using the **IAG** Assessment using the **IAG** -
- Present-day and future radiative forcings based on these simulations

References

- Terrenoire et al.: Impact of present and future aircraft NO_x and aerosol emissions on atmospheric composition and associated direct radiative forcing of climate, Atmos. Chem. Phys. (2022). <u>doi:10.5194/acp-22-11987-2022</u>
- Skowron et al.: Greater fuel efficiency is potentially preferable to reducing NO_x emissions for aviation's climate impacts. *Nat Commun* **12,** 564 (2021). <u>doi:10.1038/s41467-020-20771-3</u>
- Lee et al.: The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018, *Atmos. Environ*. \bullet (2021). <u>doi:10.1016/j.atmosenv.2020.117834</u>