# Clustering of ATTILA Trajectories using a Neuroscience Algorithm (QuickBundles) for the Characterization of **Emission Transport Pathways**

Jin Maruhashi<sup>1</sup> (J.Maruhashi@tudelft.nl), Irene Dedoussi<sup>1</sup>, Volker Grewe<sup>1,2</sup>

<sup>1</sup>Faculty of Aerospace Engineering, Section Aircraft Noise and Climate Effects, Delft University of Technology, the Netherlands <sup>2</sup>Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen, Germany

### Motivation

- **Purpose:** Characterize the main transport pathways of gas-phase emissions across the globe and seasons (Winter and Summer) using the ATTILA sub-model. Discern how the weather pattern affects these trajectories in different regions.
- Challenge: identify transport patterns from the abundance of Lagrangian trajectories. Clustering is a solution.

## **QuickBundles – Clustering Algorithm**

What is it? An agglomerative hierarchical clustering algorithm that was produced for use with MRI (Magnetic Resonance Imaging) output data with the intent of classifying nerve bundles (Garyfallidis, 2012).

#### How does it work?

- Step 1: The first trajectory is placed into a cluster.
- Step 2: The pointwise mean distance between it and the second trajectory is calculated.
- **Step 3:** If this distance is less than a clustering threshold  $\theta$  (user-defined), trajectory 2 is clustered with trajectory 1. The centroidal (averaged) trajectory is computed.
- **Step 4:** Mean distance between centroidal and candidate trajectories compared with  $\theta$ .
- **Step 5:** If  $\overline{D} \ge \theta$ , the next candidate trajectory is placed into a new cluster. Process continues.

#### Why use this specific clustering method in atmospheric sciences?

- 1) Similarity between 3D MRI streamlines and air parcel trajectories.
- 2) Flexibility: user can easily define a similarity function.
- Quick: constructed to run quickly to be useful in a clinical setting.





ATTILA Trajectory Output

# **Simulation Setup**

- EMAC Version 2.54, focus on ATTILA
- 10 1-month simulations (5 regions × 2 seasons)
  - N. America, S. America, Africa, Eurasia, Australia
  - Winter and Summer
- Each region has 28 emission points in which 50 emission-carrying trajectories are initialized.
- Emissions released at typical cruise altitude of 250 hPa.
- Resolution: T42L41







#### Africa (12/28~43%) - Summei

Real Representative Tra

N. America (16/28~57%) - Winter





Cluster 2

# Summary

- Dependence of transport pattern with meteorology.
- Seasonal effects: change in trade winds and westerlies affect airmass dynamics.
- Framework for clustering developed with QuickBundles



This project is funded by the European Commission under Grant Number 875036



References

Garyfallidis, E., Brett, M., Correia, M. M.,

Williams, G. B., & Nimmo-Smith, I. (2012).

QuickBundles, a Method for Tractography

Simplification. Frontiers in neuroscience, 6,

175. https://doi.org/10.3389/fnins.2012.00175